ВЫВОДЫ.

В данной работе были рассмотрены способы компактного хранения матрицы коэффициентов системы линейных алгебраических уравнений (СЛАУ) и методы ее решения. Разработан алгоритм компактного хранения матрицы жесткости, позволяющий в несколько раз (иногда более чем в десятки раз) сократить объем требуемой памяти для хранения такой матрицы жесткости.

Классические методы хранения, учитывающие симметричную и ленточную структуру матриц жесткости, возникающих при применении метода конечных элементов (МКЭ), как правило, не применимы при решении контактных задач, так как при их решении матрицы жесткости нескольких тел объединяются в одну общую матрицу, ширина ленты которой может стремиться к порядку системы.

Предложенная в работе методика компактного хранения матриц коэффициентов СЛАУ и использования метода Ланцоша позволили на примере решения контактных задач добиться существенной экономии процессорного времени и затрат оперативной памяти.


<< | >>
Источник: Алгоритм компактного хранения и решения СЛАУ высокого порядка. 2016
Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме ВЫВОДЫ.:

  1. Выводы, основанные на логических связях между суждениями (выводы логики высказываний)
  2. 86. Покажите и обоснуйте принципиальное отличие вывода дедуктивного от вывода индуктивного.
  3. Вопрос 6. Исчисление высказываний. Аксиомы. Правило вывода. Вывод. Тождественная истинность выводимых формул (доказать). Непротиворечивость исчисления высказываний. Теорема о полноте исчисления высказываний. Проблема разрешимости. Исчисление высказываний. Проблема разрешимости
  4. 1.2.3 Правила вывода
  5. 2.2.2 Правила вывода
  6. Выводы в логике предикатов
  7. Свойств вывод из гипотез
  8. Выводы
  9. Выводы из основного постулата
  10. 43. Оценка вывода эксперта следователем и адвокатом.
  11. Понятие правила вывода
- Аналитическая геометрия - Высшая математика - Высшая математика - Вычислительная математика - Вычислительные методы линейной алгебры - Дискретная математика - Дифференциальное и интегральное исчисление - Дифференциальные уравнения - Исследование операций - История математики - Комбинаторика - Комплексное исчисление - Линейная алгебра - Линейная алгебра и аналитическая геометрия - Линейное программирование - Математическая логика - Математическая статистика - Математическая физика - Математический анализ - Метод конечных элементов - Методы оптимизации - Обработка результатов измерений - Общая алгебра - Операционное исчисление - Основы математики - Планирование эксперимента - Пределы - Ряды - Теория вероятностей - Теория графов - Теория игр - Теория конечных автоматов - Теория массового обслуживания - Теория принятия решений - Теория случайных процессов - Теория чисел - Философия математики - Функциональный анализ - Элементарная математика -